Search results

Search for "helium ion microscopy (HIM)" in Full Text gives 18 result(s) in Beilstein Journal of Nanotechnology.

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • energy-filtered transmission electron microscopy measurements. Keywords: carbon nanomembranes; dark field; helium ion microscopy (HIM); scanning transmission ion microscopy (STIM); SRIM simulations; Introduction Throughout the past decade, the helium ion microscope (HIM) has emerged as a versatile
PDF
Album
Full Research Paper
Published 26 Feb 2021

Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy

  • Natalie Frese,
  • Patrick Schmerer,
  • Martin Wortmann,
  • Matthias Schürmann,
  • Matthias König,
  • Michael Westphal,
  • Friedemann Weber,
  • Holger Sudhoff and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 172–179, doi:10.3762/bjnano.12.13

Graphical Abstract
  • Helium ion microscopy (HIM) offers the opportunity to obtain direct views of biological samples such as cellular structures, virus particles, and microbial interactions. Imaging with the HIM combines sub-nanometer resolution, large depth of field, and high surface sensitivity. Due to its charge
  • bioimaging, especially for the imaging of interactions between viruses and their host organisms. Keywords: bioimaging; cell membrane; charge compensation; helium ion microscopy; SARS-CoV-2; Vero E6 cells; Introduction The last decade of helium ion microscopy (HIM) was characterized by a rapid exploration
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland 10.3762/bjnano.12.1 Abstract Scanning helium-ion microscopy (HIM) is an imaging technique with sub-nanometre resolution and is a powerful tool to resolve some of the tiniest structures in biology. In many aspects, the HIM
PDF
Album
Review
Published 04 Jan 2021

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • He+, Ne+, and Ga+ FIBs. Helium ion microscopy (HIM) images of a 5 nm Pt60Pd40/200 nm PMMA sample irradiated at a fluence of 1.2 × 1016 cm−2 with He+ (a) and Ga+ FIB (b). In (a) and (b), dashed lines indicate the border between the irradiated (lower parts) and non-irradiated regions (upper parts
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • well as practicalities for geological sample analyses of Li alongside a discussion of potential geological use cases of the HIM–SIMS instrument. Keywords: geoscience; helium ion microscopy (HIM); lithium; secondary ion mass spectrometry (SIMS); Introduction The helium ion microscope (HIM) is a
PDF
Album
Full Research Paper
Published 02 Oct 2020

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • integration. Keywords: atomic force microscopy (AFM); combined setup; correlative microscopy; helium ion microscopy (HIM); self-sensing cantilevers; Introduction Shortly after the invention of the atomic force microscope (AFM) in 1986 [1], efforts were made towards combining this scanning probe microscopy
PDF
Album
Full Research Paper
Published 26 Aug 2020

Stationary beam full-field transmission helium ion microscopy using sub-50 keV He+: Projected images and intensity patterns

  • Michael Mousley,
  • Santhana Eswara,
  • Olivier De Castro,
  • Olivier Bouton,
  • Nico Klingner,
  • Christoph T. Koch,
  • Gregor Hlawacek and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2019, 10, 1648–1657, doi:10.3762/bjnano.10.160

Graphical Abstract
  • addition to the lower energy of the secondary electron (SE) emission [3], the absence of back-scattered electrons allows imaging with a He+ probe to be more surface sensitive than imaging with an electron probe. For these reasons, helium ion microscopy (HIM) is increasingly being used to study a wide range
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2019

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • directly related to the number of defects in CNTs [30], or X-ray photoelectron spectroscopy (XPS) which provides some information on the chemical environment of the carbon atoms [31]. In this context, it is to be noted that helium ion microscopy (HIM) has received increasing attention recently as a high
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes

  • Sascha Koch,
  • Christopher D. Kaiser,
  • Paul Penner,
  • Michael Barclay,
  • Lena Frommeyer,
  • Daniel Emmrich,
  • Patrick Stohmann,
  • Tarek Abu-Husein,
  • Andreas Terfort,
  • D. Howard Fairbrother,
  • Oddur Ingólfsson and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2017, 8, 2562–2571, doi:10.3762/bjnano.8.256

Graphical Abstract
  • more than ten times faster cross-linking of 2-I-BPT SAMs compared to those made from the other halogenated biphenyls or from native BPT at the same current density. Furthermore, the transfer of a freestanding membrane onto a TEM grid and the subsequent investigation by helium ion microscopy (HIM
  • , for instance, helium ion microscopy (HIM) [1][8]. However, since the latter procedure has to be conducted for each individual exposure time it is significantly more labor intensive. Nevertheless, for reasons of reliability, here we have applied both these approaches to follow the cross-linking of the
PDF
Album
Full Research Paper
Published 30 Nov 2017

Ion beam profiling from the interaction with a freestanding 2D layer

  • Ivan Shorubalko,
  • Kyoungjun Choi,
  • Michael Stiefel and
  • Hyung Gyu Park

Beilstein J. Nanotechnol. 2017, 8, 682–687, doi:10.3762/bjnano.8.73

Graphical Abstract
  • beam source. For imaging the milled pores we use scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and helium ion microscopy (HIM). All methods give similar results regarding the measured focused ion beam profiles. Finally, we discuss technical limitations and
PDF
Album
Full Research Paper
Published 23 Mar 2017

Fundamental properties of high-quality carbon nanofoam: from low to high density

  • Natalie Frese,
  • Shelby Taylor Mitchell,
  • Christof Neumann,
  • Amanda Bowers,
  • Armin Gölzhäuser and
  • Klaus Sattler

Beilstein J. Nanotechnol. 2016, 7, 2065–2073, doi:10.3762/bjnano.7.197

Graphical Abstract
  • Bielefeld, Germany 10.3762/bjnano.7.197 Abstract Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Foams with different densities were produced by changing the
  • materials with different densities produced by naphthalene-assisted hydrothermal sucrose carbonization. Structural, compositional, and vibrational information is obtained by helium ion microscopy (HIM), XPS (X-ray photoelectron spectroscopy), and Raman spectroscopy, respectively. We find significant
  • carbon unique among the chemical elements, and it can lead to the formation of a variety of geometrical carbon nanofoam structures. Helium-ion microscopy (HIM) images of low-density (a,b) and high-density (c,d) carbon nanofoams, with different magnifications. Raman spectra in the 900–2000 cm−1 range, for
PDF
Album
Full Research Paper
Published 27 Dec 2016

Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

  • Kai Rückriem,
  • Sarah Grotheer,
  • Henning Vieker,
  • Paul Penner,
  • André Beyer,
  • Armin Gölzhäuser and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2016, 7, 852–861, doi:10.3762/bjnano.7.77

Graphical Abstract
  • infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving
  • exposed to 16000 μC/cm2 of 50 eV electrons. Helium ion microscopy measurements Helium ion microscopy (HIM) employs a finely focused beam of He+ ions with a diameter down to 0.35 nm, which is scanned over the sample. The secondary electrons (SE) generated by the ion impact are detected. HIM was performed
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Hydration of magnesia cubes: a helium ion microscopy study

  • Ruth Schwaiger,
  • Johannes Schneider,
  • Gilles R. Bourret and
  • Oliver Diwald

Beilstein J. Nanotechnol. 2016, 7, 302–309, doi:10.3762/bjnano.7.28

Graphical Abstract
  • these oxides are in physical contact with a solid substrate such as the ones used for immobilization to perform electron or ion microscopy imaging. We used helium ion microscopy (HIM) and investigated morphological changes of vapor-phase-grown MgO cubes after vacuum annealing and pressing into foils of
  • ion microscopy (HIM) [7] have been extensively employed in the fields of materials science [8][9]. Over the last years, HIM has developed into a high-performance alternative to the SEM. HIM is well-known for superior edge resolution reaching the low sub-nanometer range in secondary electron (SE
  • films provide an unexplored reaction medium with an essentially unknown interface chemistry affecting both the structural and functional properties of oxide materials under operational conditions [3][4]. Among the many microscopic techniques available [5][6] scanning electron microscopy (SEM) and helium
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2016

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • alleviate the resolution-limiting issues in FEBID on solid substrates is the employment of helium ion microscopy (HIM). In its current development stage, HIM is mainly used for imaging applications, providing enhanced contrast for surface features as compared to scanning electron microscopy. Along this
PDF
Editorial
Published 09 Sep 2015

Imaging of carbon nanomembranes with helium ion microscopy

  • André Beyer,
  • Henning Vieker,
  • Robin Klett,
  • Hanno Meyer zu Theenhausen,
  • Polina Angelova and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1712–1720, doi:10.3762/bjnano.6.175

Graphical Abstract
  • particle microscopy techniques such as scanning electron microscopy (SEM) or helium ion microscopy (HIM). As illustrated in Supporting Information File 1, Figure S1, SEM shows a low signal-to-noise-ratio for freestanding CNMs, especially at higher magnifications, due to charging issues [4][16]. This tends
  • , which was demonstrated with CNMs. Experimental Helium ion microscopy (HIM) was performed with a Carl Zeiss Orion Plus® microscope. The helium ion beam was operated at a current between 0.1–2.7 pA. The secondary electrons were collected by an Everhart–Thornley detector at 500 V grid voltage. For some
PDF
Album
Supp Info
Full Research Paper
Published 12 Aug 2015

Scanning reflection ion microscopy in a helium ion microscope

  • Yuri V. Petrov and
  • Oleg F. Vyvenko

Beilstein J. Nanotechnol. 2015, 6, 1125–1137, doi:10.3762/bjnano.6.114

Graphical Abstract
  • narrow beam divergence angle of about 0.5 mrad [15][16], which is ten times less than the best beam divergence angle possible in SEM. The large depth of focus makes helium ion microscopy (HIM) a very promising tool for scanning reflection microscopy. During the last decade the imaging capabilities of HIM
PDF
Album
Full Research Paper
Published 07 May 2015

Fabrication of carbon nanomembranes by helium ion beam lithography

  • Xianghui Zhang,
  • Henning Vieker,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2014, 5, 188–194, doi:10.3762/bjnano.5.20

Graphical Abstract
  • , which allowed for an ex situ observation of the cross-linking process by helium ion microscopy (HIM). In this way, three growth regimes of cross-linked areas were identified: formation of nuclei, one-dimensional (1D) and two-dimensional (2D) growth. The evaluation of the corresponding HIM images
PDF
Album
Full Research Paper
Published 21 Feb 2014

Digging gold: keV He+ ion interaction with Au

  • Vasilisa Veligura,
  • Gregor Hlawacek,
  • Robin P. Berkelaar,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2013, 4, 453–460, doi:10.3762/bjnano.4.53

Graphical Abstract
  • Vasilisa Veligura Gregor Hlawacek Robin P. Berkelaar Raoul van Gastel Harold J. W. Zandvliet Bene Poelsema Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands 10.3762/bjnano.4.53 Abstract Helium ion
  • microscopy (HIM) was used to investigate the interaction of a focused He+ ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to
PDF
Album
Full Research Paper
Published 24 Jul 2013
Other Beilstein-Institut Open Science Activities